
Speeding up Python
Or how to avoid recoding your (entire)
application in another language

Before you Start
● Most Python projects are “fast enough”. This

presentation is not for them.
● Profle your code, to identify the slow parts AKA

“hot spots”.
● The results can be surprising at times.
● Don’t bother speeding up the rest of your code.

Improving your Python
● Look into using a better algorithm or

datastructure next.
● EG: Sorting inside a loop is rarely a good idea,

and might be better handled with a tree or
SortedDict.

Add Caching
● Memorize expensive-to-compute (and recompute)

values.
● Can be done relatively easily using

functools.lru_cache in 3.2+.

Parallelise
● Multicore CPU’s have become common.
● Probably use threading or multiprocessing.

Threading
● CPython does not thread CPU-bound tasks well.
● CPython can thread I/O-bound tasks well.
● CPython cannot thread a mix of CPU-bound and I/

O-bound well.
● Jython, IronPython and MicroPython can thread

arbitrary workloads well.
● Data lives in the same threaded process. This is

good for speed, bad for reliability.

Multiprocessing
● Works with most Python implementations.
● Is a bit slower than threading when threading is

working well.
● Gives looser coupling than threading, so is easier

to “get right”.
● Can pass data from one process to another using

shared memory.

Numba
● If you’re able to isolate your performance issue to

a small number of functions or methods
(callables), consider using Numba.

● It’s just a decorator – simple.
● It has “object mode” (which doesn’t help much),

and “nopython mode” (which can help a lot, but is
more restrictive).

● nopython mode just looks like the @njit decorator

Use Python Optimizations
● https://wiki.python.org/moin/PythonSpeed/Perform

anceTips
● Building an aggregate string (where fn(x) is a str):

– Use: ‘’.join(fn(item) for item in list_)
– Not: mystring=’’; for item in list_: mystring +=

fn(item)
● Avoid .’s inside a loop.
● Avoid function and method calls.
● Avoid using globals.

https://wiki.python.org/moin/PythonSpeed/PerformanceTips
https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Pypy
● Pypy is an alternative Python interpreter that

includes a JIT out of the box.
● It’s quite a bit faster for pure python, and can be

acceptably fast for C extension modules.

Cython
● Cython is a Python-to-C transpiler.
● It accepts something that almost looks like Python as

input.
● It can be used to create C Extension Modules or entire

programs.
● It’s a lot less error prone, and there’s a lot less

boilerplate, than coding a C Extension Module by hand.
● cython3 --annotate foo.pyx: Produce a colorized HTML

report; yellow lines indicate Python interaction.

Other Python → C and/or C++
transpilers

● Pythran
● Py2C
● Py14
● Py2CPP
● There may be others...

Write just your Hotspot in C or C++

● ...and call it using Cython, CFFI, Pybind11, or
subprocess.

● Python’s ctypes might seem like a good idea, but it
can actually be a bit slow if you spend much time
crossing the C ↔ Python barrier. It’s also a bit brittle.

● The subprocess module can be even slower at the C
↔ Python barrier.

● CFFI and subprocess are notable for working well on
CPython and Pypy.

SWIG
● SWIG can be used to interface C code with a large

number of other languages, including Python.
● It can be kind of burdensome compared to

Cython, if you’re only targeting Python.
● However, if you need to expose C code to a large

number of languages, SWIG may be an attractive
option.

Boost.Python
● Boost.Python is a library of code to facilitate C++

↔ Python interoperability.
● It can do nice things like exporting a C++ iterator

as a Python iterator.
● I haven’t tried it, but I know a lot of people like it.

Rewrite your Hotspot in Rust

● Milksnake: created by Armin Ronacher (the creator
of Flask).

● rust-cpython
● PyO3: Rust bindings for CPython – a fork of rust-

cpython
● Rust requires no runtime library, so I’m told it’s a

pretty good ft.
● https://developers.redhat.com/blog/2017/11/16/sp

eed-python-using-rust/

https://developers.redhat.com/blog/2017/11/16/speed-python-using-rust/
https://developers.redhat.com/blog/2017/11/16/speed-python-using-rust/

The subprocess module
● Rewrite your hotspot in any arbitrary language.
● Then use a pipe or shared memory or socket to

communicate with that subprocess from your
Python code.

Caveat
● You can’t use things like numba and CFFI on the

same callable. You can use them in the same
process, just not on the same callable.

That’s all Folks
● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

